The Gemini Series of power systems solves the industry problem of mounting integrated access control and power into a compact rack mount application.  Using a 2U high rack drawer, the enclosure was designed to mount into an enclosed 4-post rack for stability and security.  However, in some applications the only rack available is an existing 2-post rack.  While LSP recommends 4-post rack mounting whenever possible, there are solutions available for mounting 4-post enclosures into 2-post racks.  Our latest application note AN40 provides details.

2 Post Isolated

Note that it is imperative to verify the weight capacity of the rack, as many 2-post racks are light duty and not rated for the weight of a full access control system.  Also verify the stability of the rack after installation to prevent toppling.

As always, if you have any questions on Gemini or other products, please don’t hesitate to reach out to our This e-mail address is being protected from spambots. You need JavaScript enabled to view it department.

Published in Blog
Tuesday, 16 May 2017 08:18

Unified Wired Systems for Mercury

If you visited with us at ISC West in April 2017, then you already know that our latest big news is the addition of the Unified Wired line of intelligent power systems.  Unified wired is the next big step in integration between our intelligent managed power systems and the access control panel.  Currently, Unified Wired systems are available for MCLASS (Mercury), with others to quickly follow.

Unified Wired

What is Unified Wired?

As you probably already know, our current Unified Power solutions combine the power system with dedicated  space and predrilled mounting holes for the access control boards.  This eliminates the need for custom drilling and assembling the system in a third party Hoffman or Hammond-style utility enclosure, hanging multiple enclosures, and the associated costs of each.

Our new Unified Wired line takes this concept a step further by having all of the internal wiring for the access control boards pre-done in our factory.  Wiring to the LSP power equipment is complete right to the boards, while wiring to the access control boards ends with the appropriate terminal strip pre-wired and hanging in the proper location.  To complete an installation, all you need to do is hang the enclosure, mount your access control boards, remove the terminal strips from the access control boards, and plug in the provided harnesses.  After that, all that is left is to bring in your field wiring and terminate it at the proper terminals.

What are the benefits?

Obviously, the largest benefit is the savings in time of completing the internal wiring and, as the saying goes - time is money.  The hours saved in drilling holes, wiring boards, and assembling wire bundles inside an enclosure is savings that can be passed along to your end user and your bottom line.

The other major benefit of Unified Wired Systems is consistency between systems, regardless of the office or technician doing the installation.  Every system leaves our factory the same, following our standard quality control procedures ensuring a predictable, working system every time.  Confidence in knowing what is installed saves time in installation, maintenance, and troubleshooting.

What options are available?

First, the caveat:  because of the nature of this type of product, we aren't able to offer our usual mix-and-match capability for model numbers.  However, we do have a large variety of standard configurations available to cover most any application.  For the currently available Mercury systems, we offer 4, 8, and 16 door systems in single or dual voltage.  The smaller enclosures use tie-wrapped wire bundles, while larger enclosures can use tie-wraps or full Panduit-style wire management.

Additionally, each model is available in one of three configurations:

  • A - EP1502 plus MR52's
  • B - EP2500 plus MR52's
  • C - All MR52's

This allows the installer's choice of controller (System Type A or B), plus the Type C system for expansion of additional doors.  The total number of MR52's is determined by the door count & enclosure size.

When looking at the list of available model numbers, you may notice an "extra" D8P board in all systems.  This additional D8P is prewired for powering the Mercury boards, while leaving the other D8P's to provide one auxiliary output for each door.  Also note that D8P's are used instead of D8's to satisfy the Mercury board requirement of a Class 2 limited power source.

Model Number Format

Model numbering is the same as our current Unified Power systems, with an added suffix at the end to specify the wiring and wire management in the system.  Here is an example model number:

FPO150-B100C82D8PE6M/T8-A
The first part of the number up to the E6M is a standard Unified Power model number.  The suffix breaks down as:

T              Tie Wrap wire management
8              8 Door system
A             "A-type" configuration, which uses one EP1502 and 3 MR52's (See above)

If we order the model with P8-A as the suffix, we get the same system except with Panduit wire management.  As mentioned before, the smaller enclosures do not have a Panduit option due to space limitations within the enclosure.

Unified Wired is available now either direct or through distribution for Mercury-based access control panels.  Follow us on social media and watch this blog for availability of systems for other access panels.  And as always, if you have any questions about Unified Wired or any other technical issue, don't hesitate to contact This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Published in Blog

LifeSafety Power PSA TEC 2017 Media Kit 600x160px Stop By Our Booth

We’re off to the premier education and networking event for systems integrators and security companies.

LifeSafety Power will be participating in PSA-TEC 2017, May 7-11 in Westminster, Colo., educating attendees on the advantages of proactive network-managed power solutions and demonstrating the new Unified Wired™ Authentic Mercury system and other groundbreaking solutions at A36 during exhibit hours on Wednesday, May 10.

LifeSafety Power is a Gold Sponsor of the event and Premier Vendor Partner for PSA Security Network. On Wednesday, May 10 at 8.m., Vice President Joe Holland will conduct a BICSI-certified course: “LifeSafety Power System Certification,” discussing tangible and attainable recurring monthly revenue from remote services now possible thanks to the new breed of intelligent solutions the company has single-handedly developed for the security and life safety industry.

Focus on networked managed services

Patented proactive analytics from LifeSafety Power also provide enterprise users maximum system uptime and reliability. New functionalities in products will be highlighted from recent partnerships with Mercury Security through a native integration with the Mercury EP controller family and the Software House CCURE 9000 software from Tyco Security Products, part of Johnson Controls.Mercury Security

In addition, LifeSafety Power will demonstrate its Unified Wired™ Mercury systems, a plug-and-play solution that boasts pre-configured and wired access control and power and options for network monitoring services. This solution provides substantial time and labor savings to installers, with infinite possibilities for collecting real-time data analytics.

LifeSafety Power has shifted the paradigm of the power supply industry from a static product to a new category of proactive analytics and performance that adds overall system health and reliability for every customer. Visit LifeSafety Power during PSA-TEC or contact us at (888) 577-2898.

Published in Blog
Tuesday, 30 August 2016 14:12

Using the NetLink Control Outputs

By now you are probably well aware of the NetLink's monitoring abilities and the added monitoring and control provided when an M8 board is used in conjunction with the NL4.  But did you know that both the NL2 and NL4 have two control outputs which can be used to control external relays or other devices?

Screenshot 1 Callouts

The control outputs can be used when basic control is needed without the full ISCAN functionality.  Our latest application note AN25 goes in-depth on using these control outputs to control individual devices or groups of devices, as well as other uses.   It can be found here:

http://www.lifesafetypower.com/docs/an25_netlink_control.pdf

If you have any questions on using the NetLink's control outputs or need any other assistance, our This e-mail address is being protected from spambots. You need JavaScript enabled to view it department is here to help.

Published in Blog
Thursday, 19 November 2015 15:36

Overcoming Voltage Drop using a B100

Many times an existing wire run is undersized for the current draw of the load device.  This could either be due to an unexpected change in the device being powered, a miscalculation at the planning stage of the job, or a retrofit situation where the existing wire size is not able to be changed.  This undersized wire results in a large voltage drop, leading to improper or erratic operation of the load device.  Even if the voltage at the device is at the low end of the acceptable range, the voltage will quickly drop to unacceptable levels when on battery power.

What is Voltage Drop?

Wire has a specific resistance per foot of length.  The smaller the wire gauge, the higher the resistance (given equivalent wire types).  As the length of the wire increases, the total resistance between the power source and the load device increases.  When current is now drawn through this wire resistance, some of the voltage is "burned off" in the wiring as voltage drop, as defined by Ohm's Law (V=IxR).

Per Ohm's Law, two main factors affect the amount of voltage dropped within the wire run:  the wire resistance, and the current drawn through the wire.  This is why a lower-current device can get away with a smaller wire gauge. 

This is also one of the main reasons the lifesafety industry has, and continues to, switch from 12V to 24V.  A given device will use a certain number of Watts.  If that device is designed to use a 24V input rather than 12V, the current required will be halved (per Ohm's Law I=P/E), which in turn will halve the voltage drop.

How can the B100 help?                         

If powering a 12V device, a B100 can be used to give an adjustable output voltage greater than the 12.5V nominal setting of an FPO power supply.  The FPO will need to be set for a 24V output, and the B100 placed into the adjustable range by moving JP3 to position 2.  The output can then be set by adjusting VR2 to a level giving an acceptable voltage at the load device.  Since this voltage is run off of a 24V supply with a 24V battery set, this voltage will remain constant until the battery set drains to well below 20V.

Please note that if the device being powered has varying current levels during normal operation, the voltage at the device will change with this current, possibly with damaging results.  As an example:

A B100 is set to a level of 16.5V to overcome the voltage drop through 500 feet of 18AWG wire powering a 12V edge device and a 12V maglock at a door.  The draw of the lock is 400mA and the edge device is 100mA, giving a total draw of .5A when the lock is powered.  When the lock is powered, the voltage drop will be 3.24V, leaving 13.26V at the door.  However, when the lock is released, and the current draw drops to 100mA, the voltage drop will decrease to 0.65V, giving 15.85V at the door, which is likely too high for the 12V edge device. 

In the above example you could decrease the B100 voltage to compensate, but you must take the whole operating current range into account.  If the operating current range is too large, there may not be an acceptable voltage to cover all load conditions.

For more information on the B100, see the B100 manual and Application Note AN-07.  Also, be sure to download our FlexCalculator Suite for quick voltage drop calculations.  And remember, our This e-mail address is being protected from spambots. You need JavaScript enabled to view it department is always here to help.

Published in Blog

In previous parts of this series, we have covered the basics, inputs, outputs, and jumper configuration of the C8 board.  If you missed any of these parts, you can find them here:

Part 1 - Power and LEDs
Part 2 - Inputs
Part 3 - Outputs
Part 4 - Jumpers

In this, the final part of the series, we will explain the usage of our Excel Jumper Configuration Tool.

About the Tool

The C4/C8 Jumper Configuration Tool is available free for download from the LifeSafety Power website's Calculators page, or by clicking here.

The tool uses information entered by the user to determine the correct jumper settings.  Even if you have the jumper settings memorized, the tool is very helpful in quickly configuring multiple zones.  Jumper settings can be predetermined in the office, printed, and included in the system design documentation, or done on-the-fly at the job site.

Using the Tool

To begin, open the file in Excel.  There are three sections on the screen - Voltage Sources, Zone Information, and Results.

Main Screen

Step 1 - Voltage Sources
The Voltage Sources section is where you enter the B1 and B2 voltages used as the power source for the C8.  In a single voltage system, only the B1 field will have information entered.  The B2 field should be left blank.

A dual voltage system should have both the B1 and B2 fields filled in as appropriate.  Remember that a dual FPO system (as built by LifeSafety Power) would have the top FPO's voltage in the B1 space and the bottom FPO's voltage in the B2 space.  An FPO/B100 system would have the FPO's voltage as B1 and the B100's voltage as B2.

Entering this information correctly is important for the yellow jumper's setting.  Reversing this data will cause the incorrect output voltage to be placed on the outputs, potentially damaging the powered equipment.  Remember to always double check your output voltages before connecting any load devices.

The B1/B2 information will remain consistent across all boards and zones in a typical FPO power supply system.

Step 1

In this example, the B1 supply is set for 24V and the B2 supply is set for 12V.

Step 2 - Zone Information
The Zone Information section is where you enter the information for the zone being configured.  This information may vary zone to zone.

  • Input Type - This drop-down selection allows you to choose the type of input connected to the input terminals for the zone.  Selections include NO or NC contact, remove or apply voltage, open collector, or no input.  The NO or NC contact selections are the most typical input types and would be used for a relay contact, pushbutton, etc.  The remove or apply voltage settings would activate the zone when a voltage is either removed from or applied to the B terminal of the input.  Open collector would be the setting to use for a transistor output, and "no input" would be the selection to use if you wanted a constant voltage output without input control.
  • Output Type - This drop-down selection allows you to choose the output type for the zone.  Selections include mag lock, fail safe or fail secure strike, NO or NC relay contact output, or constant output.  Choose the closest match for the output type needed (i.e. for an electrified handleset choose fail secure strike, since the operation is very similar).
  • Output Voltage - This drop-down will be populated with the values entered in the B1 and B2 fields in the Voltage Sources section above.  Select which voltage is desired for the zone.
  • Zone FAI? - This drop down has two selections - yes or no - to select whether the zone should react when an FAI is received on the FPO power supply.

Step 2

In this example, the input is set for a NO Dry Contact and the output is set for a 24V maglock with FAI.

Step 3 - Results
The results section displays the correct jumper settings for the configuration entered in steps 1 and 2.  Jumpers A-F are shown with a visual representation of positions 1 and 2 for each jumper.  Remember to look closely at the C8 PC Board for positions 1 and 2 for each jumper carefully, as these positions change from jumper to jumper.

Step 3

Conclusion

I hope this series has been useful to you and has helped you to become an expert in using the C8 family of lock control boards.  If you need any assistance, our This e-mail address is being protected from spambots. You need JavaScript enabled to view it department is here to help.

Published in Blog

showtime

Visit 3515 to find out more!!

Now in its impressive 61st year, ASIS Seminar & Exhibits runs September 28 through 30 in Anaheim Calif. The ‘new age’ of power will be there, showcased at LifeSafety Power® booth 3515.

The new and expanded line of FlexPower® Unified Power Solutions will be highlighted during the show. This innovative enclosure family integrates the industry’s most widely used access controller board power solutions, including Mercury, AMAG Technology and Software House. Unified Power Solutions take up a much smaller footprint while providing new installation opportunities for integrators. And that means costs savings and many other efficiencies for the end-user customer.

There’s even bigger news to share: we’re ready to unveil to the industry the first Mercury Security and LifeSafety Power UL-Listed system. We partnered with Mercury Security to bring to the systems integration and end-user communities one of the first UL-Listed enclosures that includes system power, lock power and remote power options in both rack mount and wall mount configurations. The breakthrough is in the UL listing garnered for the complete range of integrated components within the solution. The two specific products include the FlexPower Gemini RGM series, a rack mount product, and MCLASS Unified Power system, both with Authentic Mercury access control hardware in one compact, secure design.

The Gemini RGM rack mount enclosure is configured to save space and provide installation efficiencies. MCLASS also simplifies wiring and labor, saving the expense of mounting and wiring separate enclosures and AC drops for lock power, while reducing wall space with a smaller enclosure footprint.

More new products

Also at the show, check out the new IP Saver™ a custom appliance product family that utilizes a single LAN IP address to service up to 20 NetLink® communication module drops. NetLink is the industry’s only patented network power management system.

Finally, we’ll have a sneak peek and literature on more new developments – the 16-door Mercury E8V1 and the 16-door HID VertX E8V – ready to meet access control specifications of every size.

The product development wheels never stop turning at LifeSafety Power and we’re proud to show you some of the results of our innovative design and engineering at ASIS. Stop by to see why LifeSafety Power is the leader in Smarter Power Solutions and remote monitoring capabilities with modular power systems that continue to meet the growing needs of the life safety and security industries.

Published in Blog
Friday, 18 September 2015 11:33

Understanding the C8 Board - Part 3 - Outputs

In the previous two parts of this series, we covered the very basics and the inputs of the C8 board.  If you missed these parts, you can find them here:

Part 1 - Power and LEDs
Part 2 - Inputs

This week we will go in-depth on the outputs of the C8, including the wiring, operation, and jumper configuration.

The Anatomy of the C8 Output

Like the inputs, each output of the C8 has two terminals, labeled A and B.  Each output may be individually configured for a voltage output or a relay output and contains a reverse diode to dissipate and reverse EMF from a locking device or other inductive load.  See our White Paper and Application note on reverse EMF for more information.

When configured as a voltage output, the B terminal is the positive and the A terminal is the DC Common (ground).

C4

C8 Voltage Output

When configured as a relay output, due to the reverse diode, the current must be fed through the contact in the proper direction.  Regardless of what the relay output is activating, there will be a current present.  If the relay output of the C8 is connected backwards, the reverse diode will always be conducting and will not change with the relay.

C1

C8 Relay Output

Each output has four configuration jumpers, detailed below.

Black Jumpers (C and E)

The black jumpers for each zone, labeled C and E, configure the output for either a voltage output or a relay output.  BOTH jumpers must always be set in the same position (by the jumpers' markings) for proper operation.  Check the position markings carefully on the PC board, as position 1 and 2 for each of the black jumpers is different.

By setting the black jumpers in position 1, the output will be configured for a relay output.  By setting these jumpers to position 2, the output will be configured as a voltage output.

White Jumper (F)

The white jumper selects between the NO and NC of the output relay.  When set for a relay output, this selects a NO or NC output.  When set for a voltage output, this selects whether the output is normally powered or not powered (maglock or doorstrike). 

By setting the white jumper in position 1, the output will be NO or will normally have no voltage on the output until the input is activated (flashing green LED).  This is the typical setting for a fail-secure door strike or electrified handleset.

By setting the white jumper in position 2, the output will be NC or will normally have voltage present on the output until the input is activated.  This is the typical setting for a fail-safe maglock.

Again, there is no need to memorize all of the settings - once the blue jumper for the input is set properly (steady when locked, flashing when unlocked - see Part 2), the white jumper can be changed until the output operates correctly.

Yellow Jumper (D)

The yellow jumper selects between the buss 1 and buss 2 voltage supplied to the C8 for each output (See Part 1).  If only a single voltage source is connected to the C8, then this jumper should remain in position 1.  If two power sources are connected to the C8, then setting this jumper in position 1 will select the voltage source connected to B1 and position 2 will select the B2 power source.

Note that this jumper has no effect when the output is set as a relay output.

Voltage Output

The most common output configuration for a C8 is a voltage output.  When connecting a device to the terminals when set as a voltage output, the positive connection goes to the B terminal and the negative connection goes to the A terminal.

C2

C8 Voltage Output Wiring

Relay Output

When configured as a relay output, the current through the relay must flow from the B terminal to the A terminal (the more positive side of the voltage on the B terminal).  Note that ONLY a DC voltage may be switched through the C8 relay due to the reverse polarity diode.

C3

C8 Relay Output Wiring

Next Week

Next week we will go into detail on the jumper settings of the C8, including the usage of our Excel-based C8 Jumper Configuration Tool.  Until then, if you need any assistance, our This e-mail address is being protected from spambots. You need JavaScript enabled to view it department is here to help.

Published in Blog
Tuesday, 25 August 2015 15:47

Understanding the C8 Board - Part 1

LifeSafety Power's FlexPower line of power systems is the industry's first and only fully-modular, listed power supply system.  This allows you to choose from a variety of power supplies and output boards and combine them in the best combination for the job at hand.  One of the most versatile components at your disposal is the C4 or C8 lock control board.  Don't let the "lock control" fool you, however - the C4 and C8 can do far more than just locks. 

C4C8Photo

The C4 and C8 come in four different variations.  The C4 and C8 provide 4 and 8 zones, respectively, of 3A fused outputs.  The C4P and C8P provide the same 4 and 8 zone counts but use 2.5A PTCs, rather than fuses, to provide Class 2 Power Limiting.  In this multi-part series of posts, we will refer mostly to the C8 board, but the C8P, C4, and C4P are all identical in operation.

What does the C8 do?

The C8 board provides eight outputs, each with its own input for control.  If you are familiar with the Altronix ACM8, then you are already familiar with this basic concept.  The inputs of the C8 are low current, protecting your high-cost access control panel's relays from the high currents and return EMF spikes from the locks.  Each output can be individually selected for voltage, lock type, input type, and whether or not to unlock the door on a Fire Alarm Input (FAI) activation.  Outputs can be wet or dry (NO or NC).

Input Power & FlexIO Connections

Like all FlexPower output boards, the C8 has a dual-buss power input, allowing use in either single or dual voltage power supplies.  When used in a dual voltage power supply, the C8 allows you to select either voltage on each individual output.  Note that the C8 MUST be supplied with constant power for proper operation.  Do not use the DC2 output of the FPO power supply to power the C8 board - the C8 controls each output for FAI on its own.

C8Power

The first power supply should be connected to the B1 input of the C8.  As with all FlexPower output boards, the power connections can be made at either B1 terminal.  The BR connection serves as the DC common and must be connected to the BR terminal of the power supply.

If a second power supply is also being used, it should be connected to the B2 input of the C8.  The second power supply's BR terminal must also be connected to the other BR terminal of the C8 so that everything is common grounded together.

The FlexIO connectors supply FAI input and fault status to and from the C8 board.  Both FlexIO connectors are the same and either may be used interchangeably.  Simply plug one end of the white 2-pin FlexIO cable into the FPO power supply's FlexIO connector and the other end into the C8.

If there are other output boards already connected to the power supply, the C8 may be connected at the end of the chain, or inserted into the middle of the chain.  Make sure to match up the wire colors and B1/B2 connections to the other boards in the system.

Visual Indicators

The C4 and C8 boards have a green LED for every output indicating its status.  When the C8 is properly configured, a steady green LED indicates that the door is locked, and a flashing green indicates unlocked.  Notice we are speaking in terms of "locked" and "unlocked" rather than about the outputs being powered and unpowered.  This makes understanding and configuring the C8 easier, once you are accustomed to thinking this way - all LEDs function the same, whether the input is NO or NC, whether the output is connected to a maglock or door strike, whether FAI is active or not.

If any of the green LEDs are out, it indicates that there is a problem with the fuse (or PTC), jumper settings, or there is a missing power supply voltage.

The C4 and C8 also have a single yellow fault LED.  It will light whenever any of the green LEDs are out (blown fuse, incorrect jumper setting, or missing power supply voltage).  If there is a fault on your FPO power supply and the C8 also indicates a fault, correcting the C8 fault will likely clear the FPO fault unless multiple problems exist in the system.

Next Week

This week we covered some of the very basics of the C8.  In the next post in this series, we will go even more in-depth on the inputs of the C8 board - including wiring, configuration, and other information. Until then, if you need any assistance our This e-mail address is being protected from spambots. You need JavaScript enabled to view it department is always here to help. 

Published in Blog
Wednesday, 11 March 2015 12:46

Egress During an AC Loss

Are you in a region that requires egress doors to unlock on an AC loss?  Typically, this is accomplished by simply not placing a backup battery set on your 24V lock power supply and using fail-safe locks.

flashlight clipart flashlight md

But what if you have other locks or 24V devices you want to remain powered during an AC loss?  What if you are using fail-secure locks that need to unlock on a loss of AC power?  LifeSafety Power has a more elegant solution that offers more flexibility.

By simply integrating the AC fault relay into the FAI input circuit of the FPO power supply, you now have full control over what happens during an AC power failure using standard FAI-capable outputs.  This includes selecting which doors unlock and which don't for both fail-safe and fail-secure locks.  It also allows you to select outputs to remain powered during an AC loss.

For wiring diagrams and more information on this, see our Application Note AN-28.  And as always, our Technical Support department is here to help.

Published in Blog
  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  Next 
  •  End 
  • »
Page 1 of 2